JOM 23629

# Activation of the carbon-carbon bond in the Mn-mediated cycloaddition reaction between disilacyclobutene and cyclic conjugated dienes

Hui-Jean Chiang and Chao-Shiuan Liu

Department of Chemistry, National Tsing Hua University, Hsinchu (Taiwan) (Received September 5, 1992; in revised form February 25, 1993)

## Abstract

Cycloaddition reactions between 1,1,2,2-tetrafluoro-1,2-disilacyclobutene and cyclic conjugate dienes mediated by CpMn(CO)<sub>3</sub> under photochemical conditions generate the products resulting from a C-C cleavage of the cyclic conjugate dienes.

## 1. Introduction

We have demonstrated that in the metal-mediated cycloaddition reaction between disilacyclobutene 1 and conjugate dienes an intermediate species in the form of  $\eta^4$ -diene disilametallacycle 2 can be used as a model for fine-tuning the reaction pathways [1-6].



Correspondence to: Dr. C.-S. Liu.

The cycloaddition reactions involving H-shift as opposed to F-shift are interpreted in terms of the "hardness" of the central metal [3] as follows:



### (hardness of M : Cr > Mo > W)

We are particularly interested in the mediation effect of the "harder" metals. One reason is that "harder" transition metals seem to be better able to activate C-C bonds (such metals as Sc, V, Ti, Zr, Ta, etc. [7-9]) whereas the "softer" transition metals are more often involved in the activation of C-H bonds (such metals as Fe, Ru, Pd, Pt etc. [10-12]). If one considers C-C bond as a "harder base" than C-H, appropriate choice of a harder metal in our system may also reveal the tendency towards activation of C-C bonds.

No product involving C-C bond activation was observed in our system of reactions with various conjugated dienes mediated by the hard metals such as Cr [3,13]. In this study we chose CpMn(CO)<sub>3</sub> because Mn is relatively "hard" and the formal charge of +1 is believed further to enhance the hardness of Mn [3]. In order to avoid the other major competitive reaction pathway (namely, 1,2 H-shift or  $\beta$ -hydride synelimination) so that C-C bond activation may become prevalent, cyclic conjugated dienes were used in this study [2,14].

### 2. Results and discussion

The reactions were carried out either by reacting 1, the diene and  $CpMn(CO)_3$  all together or by forming 8 first, followed by the reaction with several dienes [3]. In practice the latter method was more convenient.



It is interesting to note that reaction conditions reflect the reaction pathways: thermal reactions at 130°C lead to products of F-shift, but photochemical reactions at 30°C result exclusively in products of H-shift. Example are shown below:



The appearance of **6a** and **9a** is believed to be the consequence of the competition between 1,4 H-shift and 1,2 H-shift in a 1,1-addition reaction involving an  $\eta^2$ -diene complex as the intermediate. The pathway of the 1,4 H-shift generates **6a** and the 1,2 H-shift gives **9a**.



168

In the reaction between 8 and cyclohexa-1,3-diene the  $\eta^2$ -diene intermediate 10 could be isolated at low temperature.



The observation of an  $\eta^2$ -diene complex of the CpMn(CO)<sub>3</sub> derivative is in agreement with many previously reported cases where CpMn(CO)<sub>3</sub> derivatives tend to form  $\eta^2$ -diene instead of  $\eta^4$ -diene complexes [15–17].

On warming 10 to room temperature it decomposed in a regiospecific manner to form the 1,2-addition product 4a [18].



It is interesting to note that, when the reaction between 8 and cyclohexa-1,3-diene was carried out photochemically in a quartz tube at 30°C, in addition to trace amounts of the 1,2-addition products (4a and 4b) [18], the major product 11a was obtained from the 1,1-addition with opening of the six-membered ring.



The structure of **11a** was supported by the coupling constants  $J_{ab}$ ,  $J_{bc}$ ,  $J_{cd}$ ,  $J_{de}$  and  $J_{ef}$  being 7.1, 10.8, 11.0, 14.9 and 10.2 Hz respectively, together with the chemical shift of the methyl group (H<sub>a</sub>) ( $\delta$  1.62, doublet). All chemical shifts of H<sub>b</sub>-H<sub>f</sub> are reasonably assigned. The <sup>13</sup>C<sup>-1</sup>H correlation spectrum helps determination of the <sup>13</sup>C chemical shifts of the four sp<sup>2</sup> carbons in the conjugate diene chain. The *trans, trans* configuration is determined by the magnitude of the coupling constants of  $J_{bc}$  (10.8 Hz) and  $J_{de}$  (14.9 Hz).

It is obvious that the formation of **11a** involves a C-C cleavage in the cyclohexa-1,3-diene. A plausible reaction mechanism is proposed in Scheme 1.



Scheme 1.

The 1,1-addition in our system, involving a C-C activation of the cyclic conjugate diene, is a new type of reaction pathway. The proposed mechanism is supported by the observation of compound 11b in the reaction between 8 and cycloocta-1,3-diene under similar reaction conditions. However, the products of 1,2-addition (4e/4f) are more abundant in this case.



The photochemical reaction between 8 and cyclohepta-1,3-diene yielded compound 12, the product resulting from a different type of C-C cleavage pathway which involved the rearrangement of cyclohepta-1,3-diene prior to the silyl attack. This reaction mechanism has been reported previously [19].



169

# 3. Experimental section

### 3.1. Syntheses

3.1.1. Preparation of 3-tert-butyl-1,1,2,2-tetrafluoro-1,2-disilacyclobutene (1)

Compound 1 was prepared by the cocondensation reaction between 3,3-dimethylbut-1-yne and difluorosilylene. The preparation procedures were as reported previously [20].

3.1.2. Preparation of  $(\eta^5 - C_5 H_5)(CO)_2 MnSiF_2C(t-Bu)=CHSiF_2$  (8)

Compound 8 was prepared by reacting 1 and  $(\eta^5 - C_5H_5)Mn(CO)_3$  under UV irradiation. The procedures and spectral data were reported previously [3].

# 3.1.3. Preparation of $(\eta^5 - C_5 H_5)(\eta^2 - C_6 H_8)(CO) - MnSiF_2C(t-Bu) = CHSiF_2$ (10)

Compound 8 (0.5 g, 1.3 mmol) and 0.5 g (6.2 mmol) of cyclohexa-1,3-diene were added to 10 ml of dried and degassed toluene in a Pyrex tube under vacuum. The reaction mixture was irradiated at  $-30^{\circ}$ C for 24 h and 8 was completely converted to compound 10. Compound 10, a colourless crystal, was not stable at room temperature, decomposing slowly to give 180 mg (0.61 mmol) of compound 4a, in 47% yield based on the quantity of 10 used. MS of 10: m/e 414 (M<sup>+</sup>-CO,  $C_{17}H_{23}Si_2F_4Mn^+$ ), 294 ( $C_{12}H_{18}Si_2F_4^+$ ), 215 ( $C_6H_{11}Si_2F_4^+$ ), 120 ( $C_5H_5Mn^+$ ), 80 ( $C_6H_8^+$ ), 65  $(C_5H_5^+)$ . <sup>19</sup>F{<sup>1</sup>H} NMR of **10**: 95.22 (d), 99.58 (d), =CHSiF<sub>2</sub>, 105.27 (d), 116.29 (d) =C(t-Bu)SiF<sub>2</sub>.  $^{13}$ C NMR of 10:  $\delta$  21.04 (s(t), CH<sub>2</sub>CH<sub>2</sub>), 30.28 (s(q), C(CH<sub>3</sub>)<sub>3</sub>), 37.78 (s(s), C(CH<sub>3</sub>)<sub>3</sub>), 74.45 and 84.58 (s(d), coordinated C=C), 82.12 (s(d),  $C_5H_5$ ), 125.62 and 129.26  $(s(d), free C=C), 143.85 (t(dt), =CHSiF_2), 183.12 (t(t),$ = $C(t-Bu)SiF_2$ , 191.0 (s(s), CO). <sup>1</sup>H NMR of 10:  $\delta$  1.1 (s, 9H, t-Bu), 2.1-2.4, (4H, -CH<sub>2</sub>-), 3.2 and 4.5, (2H, coordinated -HC=CH-), 4.8 (s, 5H, C<sub>5</sub>H<sub>5</sub>), 5.7-5.8 (2H, free -HC=CH-), 6.7 (tt, 1H,  $=CH(SiF_2)-$ ).

### 3.1.4. Preparation of 11a

Compound 8 (0.4 g, 1.0 mmol) and 0.4 g (5.0 mmol) of cyclohexa-1,3-diene were added to 10 ml of toluene in a quartz tube under vacuum. The reaction mixture was irradiated at 30°C for 48 h. After removal of solvent, vacuum distillation at 90–110°C generated an orange-red liquid. About 200 mg of PPh<sub>3</sub> and 2 ml of hexane were added to the liquid and the mixture was heated at 110°C for 2 h. Vacuum distillation at  $60 \sim 70^{\circ}$ C yielded 190 mg of colourless liquid products which contained 90% of **11a** and 10% of **4a/4b**. The yield based on the quantity of **8** was 65%. Anal. Calcd for

11a: C, 48.98; H, 6.12; F, 25.85. Found: C, 49.17; H, 5.97; F, 25.61%. MS of 11a: m/z 294 (M<sup>+</sup>,  $C_{12}H_{18}Si_{2}F_{4}^{+}$ ), 279 ( $C_{11}H_{15}Si_{2}F_{4}^{+}$ ), 237 ( $C_{8}H_{9}Si_{2}F_{4}^{+}$ ), 215 ( $C_6H_{11}Si_2F_4^+$ ). <sup>1</sup>H NMR of 11a:  $\delta$  1.10 (s, 9H, t-Bu), 1.62 (d, 3H, CH<sub>3</sub>), 1.69 (m, 1H, CH(SiF<sub>2</sub>)<sub>2</sub>), 5.34 (m, 1H,  $=CH-CH_3$ ), 5.57 (dd, 1H, (SiF<sub>2</sub>)<sub>2</sub>CH-CH=), 5.97 (dd, 1H,  $-CH=CHCH_3$ ), 6.35 (dd, 1H,  $(SiF_2)_2CH-CH=CH$ , 6.46 (m, 1H, =CHSiF<sub>2</sub>). <sup>19</sup>F{<sup>1</sup>H} NMR of 11a: 133.46 and 140.71 (ddd and dd respectively, =C(t-Bu)Si $F_2$ ,  ${}^2J(FF) = 34.2$  Hz), 138.80 and 135.53 (ddd and dd respectively, =CHSiF<sub>2</sub>,  ${}^{2}J(FF)$  = 35.4 Hz,  ${}^{4}J(FF) = 4.9$  Hz).  ${}^{13}C$  NMR of **11a**:  $\delta$  13.22  $(s(q), =C-CH_3)$ , 14.09 (m(dm),  $(SiF_2)_2CH)$ , 28.81 (s(q),  $C(CH_3)_3$ , 38.32 (s(s),  $C(CH_3)_3$ ), 120.02 (s(d),  $(SiF_2)_2CH-CH=$ , 124.53 (s(d), =CHCH<sub>3</sub>), 128.62 (s(d), =CHCH=CHCH<sub>3</sub>), 129.37 (s(d), -CH=CHCH<sub>3</sub>), 140.35  $(tt(dtt), =CHSiF_2), 182.00 (tt(tt), =C(t-Bu)SiF_2).$ 

## 3.1.5. Preparation of 11b and 4e / 4f

Compound 8 (0.4 g, 1.0 mmol) and 0.54 g (5.0 mmol) of cycloocta-1,3-diene were added to 10 ml of dried and degassed toluene in a quartz tube under vacuum. The reaction mixture was irradiated at 30°C for 72 h. After removal of solvent, vacuum distillation at 100-120°C generated a yellow liquid. About 200 mg of PPh<sub>3</sub> and 2 ml of hexane were added to the liquid and the mixture was heated at 110°C for 3 h. Then, vacuum distillation at 60-70°C yielded 220 mg of colourless liquid products which contained 35% of 11b and 65% of 4e/4f. The yield based on the quantity of 8 was 70%. MS of 11b and 4e/4f: m/z 322 (M<sup>+</sup>,  $C_{14}H_{22}Si_{2}F_{4}^{+})$ , 307 ( $C_{13}H_{19}Si_{2}F_{4}^{+}$ ), 294 ( $C_{12}H_{18}$  $Si_{2}F_{4}^{+}$ ), 280 ( $C_{11}H_{16}Si_{2}F_{4}^{+}$ ). The <sup>1</sup>H cosy, <sup>13</sup>C-<sup>1</sup>H correlation and INADEQUATE experiments help to identify the proton, carbon signals of compounds 11b and 4e/4f.

### 3.2. Spectra

All mass spectra were obtained from a JEOL JMS-100 mass spectrometer operating at 12 eV. The NMR spectra were recorded on a JEOL JMX-100 spectrometer operating at 99.55, 93.65 and 25.0 MHz for <sup>1</sup>H, <sup>19</sup>F and <sup>13</sup>C spectra, respectively, and a Bruker AM 400 spectrometer operating at 400.0, 376.5 and 100.0 MHz for <sup>1</sup>H, <sup>19</sup>F and <sup>13</sup>C spectra, respectively. Chemical shifts of <sup>1</sup>H and <sup>13</sup>C were measured in  $\delta$  values; <sup>19</sup>F chemical shifts were measured in parts per million upfield from internal standard CCl<sub>3</sub>F (C<sub>6</sub>D<sub>6</sub> was the solvent for all NMR data). For the <sup>13</sup>C data listed below, the spectral multiplicity following each chemical shift is due to the coupling with heteronuclei; the coupling patterns in <sup>13</sup>C{<sup>1</sup>H} are included in parentheses.

<sup>1</sup>H NMR of 4e or 4f  $\delta$  1.07 (s, 9H, t-Bu), 1.08 (m, 2H,  $-CH=CH-CH_2CH_2-$ ), 1.20 (m, 1H, =CH- $CH(SiF_2)-CH(SiF_2)-)$ , 1.45 (m, 2H, -CH=CH- $CH_2CH_2CH_2-$ ), 1.60 (m, 2H, = $CH-CH(SiF_2) CH(SiF_2)CH_2$ , 1.85 (m, 2H,  $-CH=CH-CH_2-CH_2-$ ), 2.34 (m, 1H,  $-CH(SiF_2)-CH=CH-$ ). 5.38 (m, 1H,  $-(CH(SiF_2)-CH=CH-)$ , 5.81 (m, 1H, ( $-CH(SiF_2)-$ CH=CH-), 6.45 (tt, =CHSiF<sub>2</sub>-). <sup>19</sup>F{<sup>1</sup>H} NMR of 4e or 4f 134.75 (d) and 138.85 (d), =CHSi $F_2$ -, <sup>2</sup>J(F,F)=17.7 Hz; 141.76 (d) and 145.54 (d), =C(t-Bu)SiF<sub>2</sub>-,  ${}^{2}J(F,F) =$ 17.7 Hz; <sup>19</sup>F{<sup>1</sup>H} NMR of 4f or 4e 136.48 (d) and 140.03 (d), =CHSiF<sub>2</sub>,  ${}^{2}J(F,F) = 16.0$  Hz; 141.38 (d) and 143.50 (d), =C(t-Bu)SiF<sub>2</sub>-,  ${}^{2}J(F,F) = 16.0$  Hz; 141.38 (d) and 143.50 (d), =C(t-Bu)SiF<sub>2</sub>-,  ${}^{2}J(F,F) = 19.1$  Hz.  ${}^{13}C$ NMR of 4e or 4f:  $\delta$  21.56 (t(dt),  $-CH(SiF_2)-CH=CH-)$ , 24.6 (s(t),  $-CH(SiF_2)-CH(SiF_2)-CH_2-$ ), 25.01 (s(d), =CH-CH(SiF<sub>2</sub>)-CH(SiF<sub>2</sub>)-), 26.31 (s(t), -CH=CH- $CH_2-CH_2-CH_2-$ ), 27.2 (s(t),  $-CH=CH-CH_2-$ ), 29.75  $(s(q), C(CH_3)_3), 29.78 (s(t), -CH=CH-CH_2-CH_2-),$ 39.44 (s(s),  $C(CH_3)_3$ ), 122.61 (s(d),  $-CH(SiF_2) CH=CH-CH_2-$ ), 134.64 (s(d),  $-CH(SiF_2)-CH=CH CH_{2}$ -), 135.32 (tt(dtt), =CHSiF<sub>2</sub>-), 174.43 (tt(tt), =C(t-Bu)SiF<sub>2</sub>–).

<sup>1</sup>H NMR of **11b**  $\delta$  1.07 (s, 9H, t-Bu), 1.37 (m, 2H, -CH=CH-CHCH<sub>2</sub>CH<sub>2</sub>-), 1.67 (m, 2H, -CH=CH-CHCH<sub>2</sub>CH<sub>2</sub>-), 2.01 (m, 1H, -(SiF<sub>2</sub>)<sub>2</sub>CH-)), 5.32 (m, 1H, -(SiF<sub>2</sub>)<sub>2</sub>CH-CH=CH-), 5.52 (m, 1H, -(SiF<sub>2</sub>)<sub>2</sub>CH-CH=CH-), 6.58 (tt, 1H, =CHSiF<sub>2</sub>-). <sup>13</sup>C NMR of **11b**  $\delta$  21.85 (m(dm), -(SiF<sub>2</sub>)<sub>2</sub>CH-), 25.61, 27.90, 28.85 (-CHCH<sub>2</sub>CH<sub>2</sub>-), 29.10 (s(q), C(CH<sub>3</sub>)), 38.45 (s(s), C(CH<sub>3</sub>)<sub>3</sub>), 123.28 (s(d), -(SiF<sub>2</sub>)<sub>2</sub>CH-CH=CH-), 133.93 (s(d), -(SiF<sub>2</sub>)<sub>2</sub>CH-CH=CH-), 138.97 (tt(dtt), =CHSiF<sub>2</sub>-), 173.10 (tt(tt), =C(t-Bu)SiF<sub>2</sub>-).

#### Acknowledgment

We thank the Chinese National Science Council for financial support of this work (NSC 81-0208-N-007-75).

### References

- 1 C.H. Lin, C.Y. Lee and C.S. Liu, Organometallics, 6 (1987) 1861.
- 2 C.H. Lin, C.Y. Lee and C.S. Liu, Organometallics, 6 (1987) 1869.
- 3 C.H. Lin, C.Y. Lee and C.S. Liu, Organometallics, 6 (1987) 1878.
- 4 C.H. Lin, C.Y. Lee and C.S. Liu, Organometallics, 6 (1987) 1882.
- 5 T.T. Tzang, C.Y. Lee and C.S. Liu, Organometallics, 7 (1988) 1265.
- 6 T.T. Tzang and C.S. Liu, Organometallics, 7 (1988) 1271.
- 7 A. Yamamoto, Organotransition Metal Chemistry, Wiley-Interscience, New York, 1986.
- 8 R.A. Coleman, C.M. O'Doherty, H.E. Tweedy, T.V. Harris and D.W. Thompson, J. Organomet. Chem., 107 (1976) C15.
- 9 P.L. Watson and D.C. Roe, J. Am. Chem. Soc., 104 (1982) 6471.
- 10 W. Geoffery, Acta Chem. Scand., Ser. A, 32 (1987) 763.
- 11 J.C. Barborak, L.W. Dasher, A.J. McPhail, J.B. Nichols and K.D. Onan, *Inorg. Chem.*, 17 (1978) 2936.
- 12 G.W. Parshall, Acc. Chem. Res., 8 (1975) 113.
- 13 C.H. Lin, C.Y. Lee, T.T. Tzang, C.C. Lin and C.S. Liu, J. Organomet. Chem., 365 (1988) 325.
- 14 C.Y. Lee, H.J. Chiang, C.S. Liu, J. Chin. Chem. Soc., 39 (1992) 149.
- 15 K.G. Caulton, Coord. Chem. Rev., 38 (1981) 1.
- 16 W. Balhelt, G. Herberhold and E.O. Fischer, J. Organomet. Chem., 21 (1970) 395.
- 17 I. Benson, S.A.R. Knox, R. Stanfield and P. Woodward, J. Chem. Soc., Chem. Commun., (1977) 404.
- 18 C.H. Lin, C.Y. Lee and C.S. Liu, J. Am. Chem. Soc., 108 (1986) 1323.
- 19 H.J. Chiang and C.S. Liu, J. Organomet. Chem., C9 (1992) 438.
- 20 C.S. Liu, J.L. Margrave and J.C. Thompson, Can. J. Chem., 50 (1972) 465.